На этапе, когда сквозная аналитика уже собрана и упорядочена, данные нуждаются в оценке, а бюджет - в оптимизации. В чем смысл составлять отчеты по результатам кампании, если после ничего не менять и не перераспределять рекламный бюджет на основе полученных данных? Чтобы оптимизировать работу кампании, нужно проанализировать уникальный путь, который проходит пользователь до совершения конверсии.
Ключевая задача атрибуции - как раз показать, как действительно работает кампания.
Для этого она сначала отвечает на вопрос, как распределяется ценность среди всех взаимодействий с пользователем, затем позволяет оценить вклад каждого канала трафика в результат и определить, какие источники (кампании) увеличивают рентабельность, а какие - их уменьшают. Тем самым, с помощью атрибуции бизнес может избежать лишних расходов, кратко улучшить CPA и добиться масштабных результатов в рамках оптимизации маркетингового бюджета.
Далее встает вопрос: какую модель атрибуции выбрать для своего бизнеса? Для этого стоит рассказать, какие модели бывают и какие достоинства можно выделить у каждой из подгрупп. Сейчас все модели атрибуции на рынке систематизируют следующим образом: есть модели на основе правил, алгоритмические модели и модели на базе машинного обучения. Сейчас рассмотрим первые два варианта.
Модели на основе правил распределяют ценность взаимодействий с помощью фиксированных закономерностей, причем в этом случае неважен ни тип конверсии, ни характер поведения пользователей
Алгоритмические модели позволяют учитывать взаимное влияние всех каналов кампании друг на друга из разных рекламных сервисов и при этом учитывать тип конверсии и характер поведения пользователей
Почему мы остановили свой выбор на Data-Driven атрибуции Шепли?
Основная проблема стандартных моделей заключается в том, что ключевую ценность они отдают тем каналам, которые отвечают заранее утвержденным правилам, т.е. не учитывают взаимосвязь одних каналов с другими. При этом эти взаимодействия, отвечающие требованиям стандартных моделей, могут никак не влиять на результат кампании и, тем более, - приводить к конверсии.
Более выгодная позиция - оценивать касание пользователя не на основе правил, а отталкиваясь от того, какой вклад оно принесло в итоговый результат кампании. А чтобы знать, какие связки каналов работают наиболее эффективно, необходимо учитывать все разнообразие путей, ведущих к конверсии.
Справедливо оценивать и эффективно перераспределять вес кампании позволит Data-driven атрибуция, выстроенная на базе вектора Шепли. На сегодня, это одна из лучших моделей для случаев, когда у клиентов есть разные источники продвижения (performance, медийные и прочие).
Алгоритм атрибуции на основе данных учитывает цепочку, в которой присутствует показы, клики, сессии пользователей, по итогу, назначая свой вес, отчего каждое взаимодействие оценивается индивидуально.
Для нас ключевыми преимуществами модели Шепли стали: